Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Standard Test Method for Cavitation and Erosion-Corrosion Characteristics of Aluminum Pumps with Engine Coolants

2001-03-05
2001-01-1181
The ASTM D 2809 test method, “Standard Test Method For Cavitation Corrosion and Erosion-Corrosion Characteristics of Aluminum Pumps With Engine Coolants” was first published in 19691. The method involves a copper-pipe circuit through which coolant solution, heated to 113°C, is pumped at 103 kPa for 100 hours. The method was modified to change the pump used in the test in 1989. It was updated in 1994 to accommodate a change in the cleaning procedure and was subsequently reapproved by the ASTM D-15 Committee on Engine Coolants in 1999.2 Tests recently conducted on several modern coolants have produced “failing” results, but the coolants are performing well in the field. Further, the repeatability and reproducibility of the method have been questioned. A round-robin series of tests sponsored by the Ford Motor Company revealed significant variations and cause for concern.
Technical Paper

Simultaneous Real-Time Measurements of NO and NO2 in Medium Duty Diesel Truck Exhaust

2007-04-16
2007-01-1329
The goal of the present work was to investigate the ability of the SEMTECH®-D Portable Emissions Measurement System (PEMS) to provide simultaneous, accurate, real-time (1Hz) measurements of NO and NO2 in vehicle exhaust. Extensive chassis dynamometer laboratory evaluation studies of the SEMTECH® system were conducted. The instantaneous (1Hz) NOx emissions were measured using a conventional chemiluminescence analyzer (CLA) and were compared to the sum of the instantaneous NO and NO2 measurements from the SEMTECH®-D. The sum of the NO and NO2 emissions measured by the SEMTECH® were in excellent agreement (within 95% in most cases) with the total NOx measurements from the conventional CLA. During the laboratory evaluation studies, several Federal Test Procedure (FTP) drive cycles were conducted. Examples of the NO and NO2 concentration and mass emissions measured using the SEMTECH®-D are presented along with the corresponding SEMTECH®-D detection limits.
Technical Paper

Side Impact Modeling using Quasi-Static Crush Data

1991-02-01
910601
This paper describes the development of a three-dimensional lumped-mass structure and dummy model to study barrier-to-car side impacts. The test procedures utilized to develop model input data are also described. The model results are compared to crash test results from a series of six barrier-to-car crash tests. Sensitivity analysis using the validated model show the necessity to account for dynamic structural rate effects when using quasi-statically measured vehicle crush data.
Technical Paper

Sequence VIB Engine Test for Evaluation of Fuel Efficiency of Engine Oils - Part II. Stage Selection and Time Factor Determination

1998-10-19
982624
The newly developed Sequence VIB engine dynamometer test for measuring the ability of engine oils to improve engine fuel efficiency was designed as an improvement on its predecessor, the Sequence VIA test. The Sequence VIB test features an additional, extended oil aging to correspond to aging of engine oils in certification vehicles and in customer use, and a new set of boundary/mixed and hydrodynamic lubrication stages to better represent a wider range of engines. Five fuel economy measurement stages were chosen for the Sequence VIB test from a larger set of prototype stages, based on extensive friction modeling of engines, analysis of Sequence VIA data on reference oils, and operational considerations. Time factors for these stages were derived based on a mini-mapping of engines considering engine operating conditions in the Metro/Highway Federal fuel economy test procedure (FTP M/H) and the estimated market volume of each engine-vehicle.
Technical Paper

Sequence VIB Engine Test for Evaluation of Fuel Efficiency of Engine Oils - Part I. Aging Procedure for Determination of Fuel Efficiency Retention

1998-10-19
982623
Development of the Sequence VIB dynamometer engine test procedure for evaluating the fuel efficiency benefits of engine oils has recently been completed. This test was designed as an improvement over its predecessor, the Sequence VIA test. It evaluates fuel economy using a range of boundary/mixed and hydrodynamic lubrication stages selected to better represent a wider range of engines. In addition to determining “fresh oil” fuel economy, the new test determines fuel efficiency retention after a second oil aging stage that corresponds to 6437 - 9674 km (4,000 - 6,000 miles) of pre-certification aging of engine oils in vehicles and is representative of customer use. This paper describes the selection of aging conditions and length.
Technical Paper

Separation of Transmission and Driveline Imbalances and Its Application

2009-05-19
2009-01-2061
Imbalances of an automatic transmission have a direct impact on NVH. To measure those imbalances, one needs to overcome two hurdles: (1) Phase uncertainty of individual component imbalance due to clutch indexing; (2) Imbalance separation of transmission from other systems, such as driveshaft and engine crank, connected to the transmission. To attack those issues, an algorithm has been developed which can deal with the phase issue caused by clutch engagement, and separate transmission imbalance at the system level without individually measuring other system imbalances. The method has been verified with several vehicle programs in both vehicle and dynamometer tests.
Technical Paper

SAE Standard Procedure J2747 for Measuring Hydraulic Pump Airborne Noise

2007-05-15
2007-01-2408
This work discusses the development of SAE procedure J2747, “Hydraulic Pump Airborne Noise Bench Test”. This is a test procedure describing a standard method for measuring radiated sound power levels from hydraulic pumps of the type typically used in automotive power steering systems, though it can be extended for use with other types of pumps. This standard was developed by a committee of industry representatives from OEM's, suppliers and NVH testing firms familiar with NVH measurement requirements for automotive hydraulic pumps. Details of the test standard are discussed. The hardware configuration of the test bench and the configuration of the test article are described. Test conditions, data acquisition and post-processing specifics are also included. Contextual information regarding the reasoning and priorities applied by the development committee is provided to further explain the strengths, limitations and intended usage of the test procedure.
Technical Paper

Robustness Testing of a Watermarking CAN Transceiver

2022-03-29
2022-01-0106
To help address the issue of message authentication on the Controller Area Network (CAN) bus, researchers at Virginia Tech and Ford Motor Company have developed a proof-of-concept time-evolving watermark-based authentication mechanism that offers robust, cryptographically controlled confirmation of a CAN message's authenticity. This watermark is injected as a common-mode signal on both CAN-HI and CAN-LO bus voltages and has been proven using a low-cost software-defined radio (SDR) testbed. This paper extends prior analysis on the design and proof-of-concept to consider robustness testing over the range of voltages, both steady state drifts and transients, as are commonly witnessed within a vehicle. Overall performance results, along with a dynamic watermark amplitude control, validate the concept as being a practical near-term approach at improving authentication confidence of messages on the CAN bus.
Technical Paper

Review of Wet Friction Component Models for Automatic Transmission Shift Analysis

2003-05-05
2003-01-1665
In a step-ratio automatic transmission system, wet friction components are widely utilized to alter planetary gear configurations for automatic shifting. Thus, their engagement characteristics have a direct impact on shift quality or drivetrain NVH. A vehicle design process can benefit from predictive friction component models that allow analytical shift quality evaluation, leading to reduced development time. However, their practical application to shift analysis is seldom discussed in the literature although there are many references available for friction component modeling itself. A successful shift analysis requires a balance of model complexity, predictability and computational efficiency for a given objective. This paper reviews three types of friction component models found in today's open literature, namely, first principle based, algebraic, and empirical models. Model structure, assumptions, computational efficiency, and utilities are discussed.
Technical Paper

Residual Stresses in Cup Drawing of Automotive Alloys

2002-07-09
2002-01-2135
Residual stresses in metals are caused by a number of processes such as inhomogeneous deformation, phase changes and temperature gradients. This investigation focuses on the residual stresses caused by plastic deformation of automotive metals. Such stresses are responsible for part springback and shape distortion in many manufacturing and assembly processes. Tensile residual stresses may lead to stress cracking and, in some alloys, to stress corrosion cracking which may ultimately lead to premature product failure. The residual stress potential of metals can be evaluated by using the Split Ring Test Method. The test can be used to evaluate the effect of materials on residual stresses in cup drawing. Drawn cups are used because they produce large amounts of residual stresses and, therefore, increase measurement accuracy and reduce experimental error. A closed form analytical solution is used to estimate residual stresses in split rings taken from sections cut from the drawn cups.
Journal Article

Reliability Evaluation of Thin, Lightweight Laminates for Windshield Applications

2016-04-05
2016-01-1401
The use of lightweight materials to produce automotive glazing is being pursued by vehicle manufacturers in an effort to improve fuel economy. As glazing’s become thinner, reduced rigidity means that the critical flaw size needed to create fracture becomes much smaller due to increased strain under load or impact. This paper documents experiments focused on the impact performance of several alternative thin laminate constructions under consideration for windshield applications (including conventional annealed soda-lime glass as well as laminates utilizing chemically strengthened glass), for the purpose of identifying new and unique failure modes that result from thickness reduction. Regulatory impact tests and experiments that focused on functional performance of laminates were conducted. Given the increased sensitivity to flaw size for thin laminates, controlled surface damage was introduced to parts prior to conducting the functional performance tests.
Technical Paper

Reduction of Groan and Grind Noise in Brake Systems

2011-09-18
2011-01-2364
Low frequency brake system noise has been a systemic and ongoing issue for several automakers. The noise is a combined effect of brake and suspension systems working with each other. The noise transmission path is also important. The latest warranty and quality indicators on this has resulted in high degree of dissatisfaction for several vehicles. The customer complaints have been for grind noise, grunt and groan. The team focused on a multi-level integrated approach for this problem. The first step was deep diving and dissecting the customer complaint data. The low frequency noise for grind and groan can be reduced to several contributors. One of the main issues was the movement of pads over the rotor fins resulting in dynamic groan type of noise. It was important to relate this to the customer complaint for grind. In association with that, the grind noise was also caused by in-stop grunt type of noise.
Technical Paper

Recycling of Automotive Seat Foam: Acoustics of Post Consumer Rebond Seat Foam For Carpet Underlayment Application

1998-02-23
980094
A study was conducted to understand the acoustic viability of using post consumer rebond seat foam materials in vehicles for floor carpet underlayment applications. These foam materials were obtained from two different sources: 1) polyurethane foam dismantled from seats of end of life vehicles (ELV or scrap vehicles), and 2) polyurethane foam recovered and cleaned from auto shredder residue (ASR) by the Argonne National Laboratories (ANL) using their cleaning method. The study was conducted using three North-American cars, each serving different market segments. Based on both laboratory and on-road tests conducted on each vehicle, the study concluded that the acoustical performance of the floor carpet underlayment part made of post consumer rebond foam is comparable to that of the current production part mostly made of shoddy materials.
Technical Paper

Real-Time Hydro-Mechanical Transmission System Simulations for Model-Guided Assessment of Complex Shift Sequence

2021-04-06
2021-01-0715
Model-guided development of drivetrain control and calibration is a key enabler of robust and efficient vehicle design process. A number of CAE tools are available today for modeling hydro-mechanical systems. Automatic transmission behaviors are well understood to effectively tune the model parameters for targeted applications. Drivetrain models provide physical insight for understanding the effects of component interactions on system behaviors. They are also widely used in HIL/SIL environments to debug control strategies. Nonetheless, it is still a challenge to predict shift quality, especially during a sequence of multiple events, with enough accuracy to support model-guided control design and calibration. The inclusion of hydraulic circuits in simulation models often results in challenges for numerical simulation.
Technical Paper

Quantification of Friction Component Engagement Controllability

2001-03-05
2001-01-1156
Conventional automatic transmissions (AT) use wet friction components, such as plate clutches and band brakes to engage gears or change speed ratios during vehicle operation. The quality of engagements and ratio changes depends greatly on the frictional characteristics of the friction components, which are typically evaluated with industry standard SAE #2 test machines. These inertia absorption-type dynamometer test stands energize a friction component with prescribed level of apply force and load of inertia flywheels rotating at a specified speed until the friction elements are brought to a stop. During the slip, apply force, engagement torque, and rotating speed are digitally recorded for visual evaluation of dynamic engagement behavior. The shape of the dynamic torque curve during the engagement is known to affect AT shift quality. When many curves are generated, it becomes intractable to quantify torque curve shape differences.
Technical Paper

Proportional Ambient Sampling: A CVS Improvement for ULEV and Lean Engine Operation

1999-03-01
1999-01-0154
As motor vehicle emissions have been reduced to meet requirements of the clean air acts, they have become low enough to be difficult to measure accurately. This is especially the case for hydrocarbons, because after warm-up, there are fewer hydrocarbons emitted from a modern vehicle's tailpipe than in the surrounding air. It is therefore important to correctly compensate for the ambient hydrocarbon levels of the air used to dilute the collected exhaust. In estimating the accuracy of the federally required testing procedures, previously published error analyses have examined the effects of random errors. This study examines the systematic errors inherent in the CVS (Constant Volume Sampling) technique specified in federal regulations, estimates their sizes, and proposes a method using proportional ambient sampling whereby they can be avoided.
Technical Paper

Progress Toward a Magnesium-Intensive Engine: The USAMP Magnesium Powertrain Cast Components Project

2004-03-08
2004-01-0654
The US Automotive Materials Partnership (USAMP) and the US Department of Energy launched the Magnesium Powertrain Cast Components Project in 2001 to determine the feasibility and desirability of producing a magnesium-intensive engine; a V6 engine with a magnesium block, bedplate, oil pan, and front cover. In 2003 the Project reached mid-point and accomplished a successful Decision Gate Review for entry into the second half (Phase II) of the Project. Three tasks, comprising Phase I were completed: (1) evaluation of the most promising low-cost, creep-resistant magnesium alloys, (2) design of the engine components using the properties of the optimized alloys and creation of cost model to assess the cost/benefit of the magnesium-intensive engine, and (3) identification and prioritization of scientific research areas deemed by the project team to be critical for the use of magnesium in powertrain applications.
Technical Paper

Process Mapping for Forward Models Quality

2017-03-28
2017-01-0296
One of the biggest challenges for the Product Development Engineers is to have a clear understanding of the Quality Principles and Disciplines they should follow while they are engineering. In general, the current Product Development System guides of the Automakers companies are mostly focused on provide guidance for the Engineers on the following areas: Design Efficiency; Design Rules for Product Robustness; Design Validation; Product Reliability; Testing Procedures. The introduction of a new/advanced technology system alone does not mean low incidence of customer complaints. The only way to get that is plan/execute Consumer Driven Design with excellence. Global Vehicles are more sensitive to Quality since they must satisfy diverse cultural customers without compromise reliability. When a new vehicle is being developed to be sold in many markets around the world - Global Product - this problem is even bigger. Different markets mean different customer expectations.
Journal Article

Predictive Transmission Shift Schedule for Improving Fuel Economy and Drivability Using Electronic Horizon

2017-03-28
2017-01-1092
This paper proposes an approach that uses the road preview data to optimize a shift schedule for a vehicle equipped with an automatic transmission. The road preview is inferred here from the so-called electronic horizon of a digital map that includes road attributes such as road grade, curvature, segment speed limit, functional class, etc. The optimized shift schedule selects the gear ratio whose optimization is conducted through applying a hybrid model predictive control method to the powertrain system, which is modelled as the multiple plants associated with multiple gears together with engine models. The goal of this optimization of shift schedule includes improving real world fuel economy and drivability. The real-world fuel economy gains using the proposed approach are achieved through optimizing gear ratio w.r.t. the road grade variations of the road ahead.
Journal Article

Predictive Break-In and Rapid Efficiency Characterization of Beam Axles

2020-04-14
2020-01-1413
Given continued industry focus on reducing parasitic losses, the ability to accurately measure the magnitude of losses on all driveline components is required. A standardized test procedure enables manufacturers and suppliers to measure component losses consistently, in addition to offering a reliable process to assess enablers for efficiency improvements. This paper reviews the development of SAE draft standard J3218, which is a comprehensive test procedure to break-in and characterize the efficiency of beam axles. Focus areas of the study included ensuring the axle’s efficiency does not change as it is being characterized, building a detailed map of efficiency at a wide range of operating points, and minimizing test time. The resulting break-in procedure uses an asymptotic regression approach to predict fully broken in efficiency of the axle and determine how much the efficiency of the axle changes during the characterization phase.
X